
Features Downloads Learn Community Governance Donate

Reproducible builds 
and deployments.
Powerful package manager for Linux and other Unix systems that makes package 
management reliable and reproducible. Share your development and build 
environments across different machines.

Linux distribution with a unique approach to package and configuration 
management. Built on top of the Nix package manager, it is completely declarative, 
makes upgrading systems reliable, and has many other advantages.

DownloadGet started

Why choose Nix or NixOS?

Examples

Nix builds packages in isolation from each other. This 
ensures that they are reproducible and don't have 

undeclared dependencies, so if a package works on one 
machine, it will also work on another.

Nix makes it trivial to share development and build 
environments for your projects, regardless of what 

programming languages and tools you’re using.

Nix ensures that installing or upgrading one package 
cannot break other packages. It allows you to roll back to 
previous versions, and ensures that no package is in an 

inconsistent state during an upgrade.

It`s Reproducible... It`s Declarative... It`s Reliable...

Nix

NixOS

Nix Channel Status 

Nix packages search 

NixOS options search 

 

Governance 

Security

Forum 

Chat 

Comercial support

Contributing Guide 

Donate

News 

NixOS Weekly

The project Get in Touch The choice is yoursContribute

Up to date

Copyright © 2020 NixOS 
All Rights Reserved

Connect with us:

Download Get started

Nix

NixOS

Linux Package manager...

Linux Distribution...

Choose from Thousands 
of Packages

The Nix Packages collection (nixpkgs) is a set of over 60.000 packages for the Nix package manager.

or search among many NixOS options.

Search for a package Download

Try new tools without fear

Multiple languages, one tool

Isolated development 
environments

Minimal docker image
Don't clutter your system with tools that you use only now 
and then. After you get familiar with nix-shell -p you can take the 

next step and learn some Nix. To setup a more persistent 
environment you can also write a simple shell.nix file:

Using a Dockerfile, you are responsible for: 
- cleaning up everything that is not needed at runtime 
- deciding how to split into layers for better caching 
 
Writing a Dockerfile that would produce a minimal image 
is at best a very error prone process. 
 
With Nix only packages you define are included in the 
docker image. No cleaning up needed. There are no build 
tools left in your docker image, making it as minimal as 
you need. 
 
Nix also knows how to layer your resulting docker image, 
automatically. The resulting layers are optimized for 
caching as much as possible. 
 
The following Nix expression (default.nix) defines a docker 
image with only hello package in it.

Then enter development environment with:

Commit the above shell.nix file and let you coworkers have 
easier time setting their development environment.

To build and run the image you need to:

Learn more how to build docker images.


