Reproducible builds
and deployments.

Nix
Powerful package manager for Linux and other Unix systems that makes package

management reliable and reproducible. Share your development and build
environments across different machines.

NixOS

Linux distribution with a unique approach to package and configuration
management. Built on top of the Nix package manager, it is completely declarative,
makes upgrading systems reliable, and has many other advantages.

Reproducible builds
and deployments.

Powerful package manager for Linux and other Unix systems that makes package
management reliable and reproducible. Share your development and build
environments across different machines.

Linux distribution with a unique approach to package and configuration
management. Built on top of the Nix package manager, it is completely declarative,
makes upgrading systems reliable, and has many other advantages.

Get started

Reproducible builds
and deployments.

Nix
Powerful package manager for Linux and other Unix systems that makes package

management reliable and reproducible. Share your development and build
environments across different machines.

NixOS

Linux distribution with a unique approach to package and configuration
management. Built on top of the Nix package manager, it is completely declarative,
makes upgrading systems reliable, and has many other advantages.

Get started

Reproducible builds and

deployments.

Powerful package manager for Linux and
other Unix systems that makes package
management reliable and reproducible.
Share your development and build

environments across different machines.

KXXXKXXKXXKXXKXX

Get started

Linux distribution with a unique approach to
package and configuration management.
Built on top of the Nix package manager, it is
completely declarative, makes upgrading
systems reliable, and has many other
advantages.

% bat default.nix
| File: default.nix

| { pkgs ? import <nixpkgs> {} # here we import the nixpkgs package s

pkgs.mkShell { ell is a helper function
name="dev-environ - equires a name
buildInputs = [st of packages
pkgs.nodeijs
I
shellHook = "° ‘ n when you enter the shell
echo "5tart df

1.
J-
3

1
J

¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:

$ nix-shell

S5tart developing. ..

node -e “"console.log(1+1)

Now go ahead commit default.l

$ bat default.nix
| File: default.nix
| { pkgs ? import <nixpkgs> {} # here we import the nixpkgs package s

pkgs.mkShell { ell is a helper function
name="dev-environ : equires a name
buildInputs = | st of packages
pkgs.nodejs

shellHook = ' ' n when you enter the shell
echo "Start df

3

|
|
|
|
|
| 1;
|
|
|
|

1
J

% # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:
$ nix-shell
Start developing...
node -e "console.log(1+1)"

Now go ahead commit default.l

$ bat default.nix
| File: default.nix

{ pkgs ? import <nixpkgs> {} # here we import the nixpkgs package s

kgs.mkShell { ell is a helper function

name="dev-environ 4 pquires a name

buildInputs = | st of packages
pkgs.nodejs

Is

shellHook = '° ' n when you enter the shell
echo "Start df

¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:
$ nix-shell
Start developing...
node -e "console.log(1+1)"

Now go ahead commit default.l

$ bat default.nix
| File: default.nix

{ pkgs ? import <nixpkgs> {} # here we import the nixpkgs package s

kgs.mkShell { ell is a helper function
name="dev-environ : equires a name
buildInputs = st of packages

n when you enter the shell

¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:
% nix-shell
Start developing. ..
node -e "console.log(1+1)"

Now go ahead commit default.l

Current versions

Current versions

Current versions

Current versions

