Reproducible builds
and deployments.

Nix
Powerful package manager for Linux and other Unix systems that makes package

management reliable and reproducible. Share your development and build
environments across different machines.

NixOS

Linux distribution with a unique approach to package and configuration
management. Built on top of the Nix package manager, it is completely declarative,
makes upgrading systems reliable, and has many other advantages.
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¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:

$ nix-shell

S5tart developing. ..

node -e “"console.log(1+1)

# Now go ahead commit default.l
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$ # To enter dev-environment simply run:
$ nix-shell
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# Now go ahead commit default.l
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¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:
$ nix-shell
Start developing...
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# Now go ahead commit default.l

$ bat default.nix
| File: default.nix

{ pkgs ? import <nixpkgs> {} # here we import the nixpkgs package s
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¥ # Pause the video to understand the default.nix
$ # To enter dev-environment simply run:
% nix-shell
Start developing. ..
node -e "console.log(1+1)"

# Now go ahead commit default.l
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