// `TryFrom` is a simple and safe type conversion that may fail in a controlled // way under some circumstances. Basically, this is the same as `From`. The main // difference is that this should return a `Result` type instead of the target // type itself. You can read more about it in the documentation: // https://doc.rust-lang.org/std/convert/trait.TryFrom.html use std::convert::{TryFrom, TryInto}; #[derive(Debug, PartialEq)] struct Color { red: u8, green: u8, blue: u8, } // We will use this error type for the `TryFrom` conversions. #[derive(Debug, PartialEq)] enum IntoColorError { // Incorrect length of slice BadLen, // Integer conversion error IntConversion, } impl TryFrom<(i16, i16, i16)> for Color { type Error = IntoColorError; fn try_from(tuple: (i16, i16, i16)) -> Result { let (Ok(red), Ok(green), Ok(blue)) = ( u8::try_from(tuple.0), u8::try_from(tuple.1), u8::try_from(tuple.2), ) else { return Err(IntoColorError::IntConversion); }; Ok(Self { red, green, blue }) } } impl TryFrom<[i16; 3]> for Color { type Error = IntoColorError; fn try_from(arr: [i16; 3]) -> Result { // Reuse the implementation for a tuple. Self::try_from((arr[0], arr[1], arr[2])) } } impl TryFrom<&[i16]> for Color { type Error = IntoColorError; fn try_from(slice: &[i16]) -> Result { // Check the length. if slice.len() != 3 { return Err(IntoColorError::BadLen); } // Reuse the implementation for a tuple. Self::try_from((slice[0], slice[1], slice[2])) } } fn main() { // Using the `try_from` function. let c1 = Color::try_from((183, 65, 14)); println!("{c1:?}"); // Since `TryFrom` is implemented for `Color`, we can use `TryInto`. let c2: Result = [183, 65, 14].try_into(); println!("{c2:?}"); let v = vec![183, 65, 14]; // With slice we should use the `try_from` function let c3 = Color::try_from(&v[..]); println!("{c3:?}"); // or put the slice within round brackets and use `try_into`. let c4: Result = (&v[..]).try_into(); println!("{c4:?}"); } #[cfg(test)] mod tests { use super::*; use IntoColorError::*; #[test] fn test_tuple_out_of_range_positive() { assert_eq!(Color::try_from((256, 1000, 10000)), Err(IntConversion)); } #[test] fn test_tuple_out_of_range_negative() { assert_eq!(Color::try_from((-1, -10, -256)), Err(IntConversion)); } #[test] fn test_tuple_sum() { assert_eq!(Color::try_from((-1, 255, 255)), Err(IntConversion)); } #[test] fn test_tuple_correct() { let c: Result = (183, 65, 14).try_into(); assert!(c.is_ok()); assert_eq!( c.unwrap(), Color { red: 183, green: 65, blue: 14, } ); } #[test] fn test_array_out_of_range_positive() { let c: Result = [1000, 10000, 256].try_into(); assert_eq!(c, Err(IntConversion)); } #[test] fn test_array_out_of_range_negative() { let c: Result = [-10, -256, -1].try_into(); assert_eq!(c, Err(IntConversion)); } #[test] fn test_array_sum() { let c: Result = [-1, 255, 255].try_into(); assert_eq!(c, Err(IntConversion)); } #[test] fn test_array_correct() { let c: Result = [183, 65, 14].try_into(); assert!(c.is_ok()); assert_eq!( c.unwrap(), Color { red: 183, green: 65, blue: 14 } ); } #[test] fn test_slice_out_of_range_positive() { let arr = [10000, 256, 1000]; assert_eq!(Color::try_from(&arr[..]), Err(IntConversion)); } #[test] fn test_slice_out_of_range_negative() { let arr = [-256, -1, -10]; assert_eq!(Color::try_from(&arr[..]), Err(IntConversion)); } #[test] fn test_slice_sum() { let arr = [-1, 255, 255]; assert_eq!(Color::try_from(&arr[..]), Err(IntConversion)); } #[test] fn test_slice_correct() { let v = vec![183, 65, 14]; let c: Result = Color::try_from(&v[..]); assert!(c.is_ok()); assert_eq!( c.unwrap(), Color { red: 183, green: 65, blue: 14, } ); } #[test] fn test_slice_excess_length() { let v = vec![0, 0, 0, 0]; assert_eq!(Color::try_from(&v[..]), Err(BadLen)); } #[test] fn test_slice_insufficient_length() { let v = vec![0, 0]; assert_eq!(Color::try_from(&v[..]), Err(BadLen)); } }