use anyhow::{bail, Context, Error, Result}; use crossterm::{ style::{ResetColor, SetForegroundColor}, terminal, QueueableCommand, }; use std::{ env, fs::{File, OpenOptions}, io::{Read, Seek, StdoutLock, Write}, path::{Path, MAIN_SEPARATOR_STR}, process::{Command, Stdio}, sync::{ atomic::{AtomicUsize, Ordering::Relaxed}, mpsc, }, thread, }; use crate::{ clear_terminal, cmd::CmdRunner, collections::hash_set_with_capacity, embedded::EMBEDDED_FILES, exercise::{Exercise, RunnableExercise}, info_file::ExerciseInfo, term::{self, progress_bar_with_success}, }; const STATE_FILE_NAME: &str = ".rustlings-state.txt"; const DEFAULT_CHECK_PARALLELISM: usize = 8; #[must_use] pub enum ExercisesProgress { // All exercises are done. AllDone, // A new exercise is now pending. NewPending, // The current exercise is still pending. CurrentPending, } pub enum StateFileStatus { Read, NotRead, } enum ExerciseCheckProgress { Checking, Done, Pending, Error, } #[derive(Clone, Copy)] enum ExerciseCheckResult { Done, Pending, Error, } pub struct AppState { current_exercise_ind: usize, exercises: Vec, // Caches the number of done exercises to avoid iterating over all exercises every time. n_done: u16, final_message: String, state_file: File, // Preallocated buffer for reading and writing the state file. file_buf: Vec, official_exercises: bool, cmd_runner: CmdRunner, // Running in VS Code. vs_code: bool, } impl AppState { pub fn new( exercise_infos: Vec, final_message: String, ) -> Result<(Self, StateFileStatus)> { let cmd_runner = CmdRunner::build()?; let mut state_file = OpenOptions::new() .create(true) .read(true) .write(true) .truncate(false) .open(STATE_FILE_NAME) .with_context(|| { format!("Failed to open or create the state file {STATE_FILE_NAME}") })?; let dir_canonical_path = term::canonicalize("exercises"); let mut exercises = exercise_infos .into_iter() .map(|exercise_info| { // Leaking to be able to borrow in the watch mode `Table`. // Leaking is not a problem because the `AppState` instance lives until // the end of the program. let path = exercise_info.path().leak(); let name = exercise_info.name.leak(); let dir = exercise_info.dir.map(|dir| &*dir.leak()); let hint = exercise_info.hint.leak().trim_ascii(); let canonical_path = dir_canonical_path.as_deref().map(|dir_canonical_path| { let mut canonical_path; if let Some(dir) = dir { canonical_path = String::with_capacity( 2 + dir_canonical_path.len() + dir.len() + name.len(), ); canonical_path.push_str(dir_canonical_path); canonical_path.push_str(MAIN_SEPARATOR_STR); canonical_path.push_str(dir); } else { canonical_path = String::with_capacity(1 + dir_canonical_path.len() + name.len()); canonical_path.push_str(dir_canonical_path); } canonical_path.push_str(MAIN_SEPARATOR_STR); canonical_path.push_str(name); canonical_path.push_str(".rs"); canonical_path }); Exercise { dir, name, path, canonical_path, test: exercise_info.test, strict_clippy: exercise_info.strict_clippy, hint, // Updated below. done: false, } }) .collect::>(); let mut current_exercise_ind = 0; let mut n_done = 0; let mut file_buf = Vec::with_capacity(2048); let state_file_status = 'block: { if state_file.read_to_end(&mut file_buf).is_err() { break 'block StateFileStatus::NotRead; } // See `Self::write` for more information about the file format. let mut lines = file_buf.split(|c| *c == b'\n').skip(2); let Some(current_exercise_name) = lines.next() else { break 'block StateFileStatus::NotRead; }; if current_exercise_name.is_empty() || lines.next().is_none() { break 'block StateFileStatus::NotRead; } let mut done_exercises = hash_set_with_capacity(exercises.len()); for done_exerise_name in lines { if done_exerise_name.is_empty() { break; } done_exercises.insert(done_exerise_name); } for (ind, exercise) in exercises.iter_mut().enumerate() { if done_exercises.contains(exercise.name.as_bytes()) { exercise.done = true; n_done += 1; } if exercise.name.as_bytes() == current_exercise_name { current_exercise_ind = ind; } } StateFileStatus::Read }; file_buf.clear(); file_buf.extend_from_slice(STATE_FILE_HEADER); let slf = Self { current_exercise_ind, exercises, n_done, final_message, state_file, file_buf, official_exercises: !Path::new("info.toml").exists(), cmd_runner, vs_code: env::var_os("TERM_PROGRAM").is_some_and(|v| v == "vscode"), }; Ok((slf, state_file_status)) } #[inline] pub fn current_exercise_ind(&self) -> usize { self.current_exercise_ind } #[inline] pub fn exercises(&self) -> &[Exercise] { &self.exercises } #[inline] pub fn n_done(&self) -> u16 { self.n_done } #[inline] pub fn current_exercise(&self) -> &Exercise { &self.exercises[self.current_exercise_ind] } #[inline] pub fn cmd_runner(&self) -> &CmdRunner { &self.cmd_runner } #[inline] pub fn vs_code(&self) -> bool { self.vs_code } // Write the state file. // The file's format is very simple: // - The first line is a comment. // - The second line is an empty line. // - The third line is the name of the current exercise. It must end with `\n` even if there // are no done exercises. // - The fourth line is an empty line. // - All remaining lines are the names of done exercises. fn write(&mut self) -> Result<()> { self.file_buf.truncate(STATE_FILE_HEADER.len()); self.file_buf .extend_from_slice(self.current_exercise().name.as_bytes()); self.file_buf.push(b'\n'); for exercise in &self.exercises { if exercise.done { self.file_buf.push(b'\n'); self.file_buf.extend_from_slice(exercise.name.as_bytes()); } } self.state_file .rewind() .with_context(|| format!("Failed to rewind the state file {STATE_FILE_NAME}"))?; self.state_file .set_len(0) .with_context(|| format!("Failed to truncate the state file {STATE_FILE_NAME}"))?; self.state_file .write_all(&self.file_buf) .with_context(|| format!("Failed to write the state file {STATE_FILE_NAME}"))?; Ok(()) } pub fn set_current_exercise_ind(&mut self, exercise_ind: usize) -> Result<()> { if exercise_ind == self.current_exercise_ind { return Ok(()); } if exercise_ind >= self.exercises.len() { bail!(BAD_INDEX_ERR); } self.current_exercise_ind = exercise_ind; self.write() } pub fn set_current_exercise_by_name(&mut self, name: &str) -> Result<()> { // O(N) is fine since this method is used only once until the program exits. // Building a hashmap would have more overhead. self.current_exercise_ind = self .exercises .iter() .position(|exercise| exercise.name == name) .with_context(|| format!("No exercise found for '{name}'!"))?; self.write() } // Set the status of an exercise without saving. Returns `true` if the // status actually changed (and thus needs saving later). pub fn set_status(&mut self, exercise_ind: usize, done: bool) -> Result { let exercise = self .exercises .get_mut(exercise_ind) .context(BAD_INDEX_ERR)?; if exercise.done == done { return Ok(false); } exercise.done = done; if done { self.n_done += 1; } else { self.n_done -= 1; } Ok(true) } // Set the status of an exercise to "pending" and save. pub fn set_pending(&mut self, exercise_ind: usize) -> Result<()> { if self.set_status(exercise_ind, false)? { self.write()?; } Ok(()) } // Official exercises: Dump the original file from the binary. // Third-party exercises: Reset the exercise file with `git stash`. fn reset(&self, exercise_ind: usize, path: &str) -> Result<()> { if self.official_exercises { return EMBEDDED_FILES .write_exercise_to_disk(exercise_ind, path) .with_context(|| format!("Failed to reset the exercise {path}")); } let output = Command::new("git") .arg("stash") .arg("push") .arg("--") .arg(path) .stdin(Stdio::null()) .stdout(Stdio::null()) .output() .with_context(|| format!("Failed to run `git stash push -- {path}`"))?; if !output.status.success() { bail!( "`git stash push -- {path}` didn't run successfully: {}", String::from_utf8_lossy(&output.stderr), ); } Ok(()) } pub fn reset_current_exercise(&mut self) -> Result<&'static str> { self.set_pending(self.current_exercise_ind)?; let exercise = self.current_exercise(); self.reset(self.current_exercise_ind, exercise.path)?; Ok(exercise.path) } // Reset the exercise by index and return its name. pub fn reset_exercise_by_ind(&mut self, exercise_ind: usize) -> Result<&'static str> { if exercise_ind >= self.exercises.len() { bail!(BAD_INDEX_ERR); } self.set_pending(exercise_ind)?; let exercise = &self.exercises[exercise_ind]; self.reset(exercise_ind, exercise.path)?; Ok(exercise.name) } // Return the index of the next pending exercise or `None` if all exercises are done. fn next_pending_exercise_ind(&self) -> Option { let next_ind = self.current_exercise_ind + 1; self.exercises // If the exercise done isn't the last, search for pending exercises after it. .get(next_ind..) .and_then(|later_exercises| { later_exercises .iter() .position(|exercise| !exercise.done) .map(|ind| next_ind + ind) }) // Search from the start. .or_else(|| { self.exercises[..self.current_exercise_ind] .iter() .position(|exercise| !exercise.done) }) } /// Official exercises: Dump the solution file from the binary and return its path. /// Third-party exercises: Check if a solution file exists and return its path in that case. pub fn current_solution_path(&self) -> Result> { if cfg!(debug_assertions) { return Ok(None); } let current_exercise = self.current_exercise(); if self.official_exercises { EMBEDDED_FILES .write_solution_to_disk(self.current_exercise_ind, current_exercise.name) .map(Some) } else { let sol_path = current_exercise.sol_path(); if Path::new(&sol_path).exists() { return Ok(Some(sol_path)); } Ok(None) } } // Return the exercise index of the first pending exercise found. pub fn check_all_exercises(&mut self, stdout: &mut StdoutLock) -> Result> { stdout.write_all("Checking all exercises…\n".as_bytes())?; let n_exercises = self.exercises.len() as u16; let next_exercise_ind = AtomicUsize::new(0); let term_width = terminal::size() .context("Failed to get the terminal size")? .0; let mut results = vec![ExerciseCheckResult::Error; self.exercises.len()]; let mut done = 0; let mut pending = 0; thread::scope(|s| { let mut checking = 0; let (exercise_result_sender, exercise_result_receiver) = mpsc::channel(); let n_threads = thread::available_parallelism() .map_or(DEFAULT_CHECK_PARALLELISM, |count| count.get()); for _ in 0..n_threads { let exercise_result_sender = exercise_result_sender.clone(); let next_exercise_ind = &next_exercise_ind; let slf = &self; thread::Builder::new() .spawn_scoped(s, move || loop { let exercise_ind = next_exercise_ind.fetch_add(1, Relaxed); let Some(exercise) = slf.exercises.get(exercise_ind) else { // No more exercises. break; }; // Notify the progress bar that this exercise is pending. if exercise_result_sender .send((exercise_ind, ExerciseCheckProgress::Checking)) .is_err() { break; }; let success = exercise.run_exercise(None, &slf.cmd_runner); let result = match success { Ok(true) => ExerciseCheckProgress::Done, Ok(false) => ExerciseCheckProgress::Pending, Err(_) => ExerciseCheckProgress::Error, }; // Notify the progress bar that this exercise is done. if exercise_result_sender.send((exercise_ind, result)).is_err() { break; } }) .context("Failed to spawn a thread to check all exercises")?; } // Drop this sender to detect when the last thread is done. drop(exercise_result_sender); // Print the legend. stdout.write_all(b"Color legend: ")?; stdout.queue(SetForegroundColor(term::PROGRESS_FAILED_COLOR))?; stdout.write_all(b"Pending")?; stdout.queue(ResetColor)?; stdout.write_all(b" - ")?; stdout.queue(SetForegroundColor(term::PROGRESS_SUCCESS_COLOR))?; stdout.write_all(b"Done")?; stdout.queue(ResetColor)?; stdout.write_all(b" - ")?; stdout.queue(SetForegroundColor(term::PROGRESS_PENDING_COLOR))?; stdout.write_all(b"Checking")?; stdout.queue(ResetColor)?; stdout.write_all(b"\n")?; while let Ok((exercise_ind, result)) = exercise_result_receiver.recv() { match result { ExerciseCheckProgress::Checking => checking += 1, ExerciseCheckProgress::Done => { results[exercise_ind] = ExerciseCheckResult::Done; checking -= 1; done += 1; } ExerciseCheckProgress::Pending => { results[exercise_ind] = ExerciseCheckResult::Pending; checking -= 1; pending += 1; } ExerciseCheckProgress::Error => checking -= 1, } stdout.write_all(b"\r")?; progress_bar_with_success( stdout, checking, pending, done, n_exercises, term_width, )?; stdout.flush()?; } Ok::<_, Error>(()) })?; let mut first_pending_exercise_ind = None; for (exercise_ind, result) in results.into_iter().enumerate() { match result { ExerciseCheckResult::Done => { self.set_status(exercise_ind, true)?; } ExerciseCheckResult::Pending => { self.set_status(exercise_ind, false)?; if first_pending_exercise_ind.is_none() { first_pending_exercise_ind = Some(exercise_ind); } } ExerciseCheckResult::Error => { // If we got an error while checking all exercises in parallel, // it could be because we exceeded the limit of open file descriptors. // Therefore, try running exercises with errors sequentially. let exercise = &self.exercises[exercise_ind]; let success = exercise.run_exercise(None, &self.cmd_runner)?; if success { done += 1; } else { pending += 1; if first_pending_exercise_ind.is_none() { first_pending_exercise_ind = Some(exercise_ind); } } self.set_status(exercise_ind, success)?; stdout.write_all(b"\r")?; progress_bar_with_success( stdout, u16::from(pending + done < n_exercises), pending, done, n_exercises, term_width, )?; stdout.flush()?; } } } self.write()?; stdout.write_all(b"\n\n")?; Ok(first_pending_exercise_ind) } /// Mark the current exercise as done and move on to the next pending exercise if one exists. /// If all exercises are marked as done, run all of them to make sure that they are actually /// done. If an exercise which is marked as done fails, mark it as pending and continue on it. pub fn done_current_exercise( &mut self, stdout: &mut StdoutLock, ) -> Result { let exercise = &mut self.exercises[self.current_exercise_ind]; if !exercise.done { exercise.done = true; self.n_done += 1; } if let Some(ind) = self.next_pending_exercise_ind() { self.set_current_exercise_ind(ind)?; return Ok(ExercisesProgress::NewPending); } if CLEAR_BEFORE_FINAL_CHECK { clear_terminal(stdout)?; } else { stdout.write_all(b"\n")?; } if let Some(first_pending_exercise_ind) = self.check_all_exercises(stdout)? { self.set_current_exercise_ind(first_pending_exercise_ind)?; return Ok(ExercisesProgress::NewPending); } self.render_final_message(stdout)?; Ok(ExercisesProgress::AllDone) } pub fn render_final_message(&self, stdout: &mut StdoutLock) -> Result<()> { clear_terminal(stdout)?; stdout.write_all(FENISH_LINE.as_bytes())?; let final_message = self.final_message.trim_ascii(); if !final_message.is_empty() { stdout.write_all(final_message.as_bytes())?; stdout.write_all(b"\n")?; } Ok(()) } } const BAD_INDEX_ERR: &str = "The current exercise index is higher than the number of exercises"; const STATE_FILE_HEADER: &[u8] = b"DON'T EDIT THIS FILE!\n\n"; const FENISH_LINE: &str = "+----------------------------------------------------+ | You made it to the Fe-nish line! | +-------------------------- ------------------------+ \\/\x1b[31m ▒▒ ▒▒▒▒▒▒▒▒ ▒▒▒▒▒▒▒▒ ▒▒ ▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒ ▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒ ░░▒▒▒▒░░▒▒ ▒▒ ▒▒ ▒▒ ▒▒░░▒▒▒▒ ▓▓▓▓▓▓▓▓ ▓▓ ▓▓██ ▓▓ ▓▓██ ▓▓ ▓▓▓▓▓▓▓▓ ▒▒▒▒ ▒▒ ████ ▒▒ ████ ▒▒░░ ▒▒▒▒ ▒▒ ▒▒▒▒▒▒ ▒▒▒▒▒▒ ▒▒▒▒▒▒ ▒▒ ▒▒▒▒▒▒▒▒▒▒▓▓▓▓▓▓▒▒▒▒▒▒▒▒▓▓▓▓▓▓▒▒▒▒▒▒▒▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒▒▒▒▒▒▒▒▒▒██▒▒▒▒▒▒██▒▒▒▒▒▒▒▒▒▒ ▒▒ ▒▒▒▒▒▒▒▒▒▒██████▒▒▒▒▒▒▒▒▒▒ ▒▒ ▒▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒\x1b[0m "; #[cfg(test)] mod tests { use super::*; fn dummy_exercise() -> Exercise { Exercise { dir: None, name: "0", path: "exercises/0.rs", canonical_path: None, test: false, strict_clippy: false, hint: "", done: false, } } #[test] fn next_pending_exercise() { let mut app_state = AppState { current_exercise_ind: 0, exercises: vec![dummy_exercise(), dummy_exercise(), dummy_exercise()], n_done: 0, final_message: String::new(), state_file: tempfile::tempfile().unwrap(), file_buf: Vec::new(), official_exercises: true, cmd_runner: CmdRunner::build().unwrap(), vs_code: false, }; let mut assert = |done: [bool; 3], expected: [Option; 3]| { for (exercise, done) in app_state.exercises.iter_mut().zip(done) { exercise.done = done; } for (ind, expected) in expected.into_iter().enumerate() { app_state.current_exercise_ind = ind; assert_eq!( app_state.next_pending_exercise_ind(), expected, "done={done:?}, ind={ind}", ); } }; assert([true, true, true], [None, None, None]); assert([false, false, false], [Some(1), Some(2), Some(0)]); assert([false, true, true], [None, Some(0), Some(0)]); assert([true, false, true], [Some(1), None, Some(1)]); assert([true, true, false], [Some(2), Some(2), None]); assert([true, false, false], [Some(1), Some(2), Some(1)]); assert([false, true, false], [Some(2), Some(2), Some(0)]); assert([false, false, true], [Some(1), Some(0), Some(0)]); } }