mirror of
https://github.com/notohh/rustlings.git
synced 2024-11-23 06:02:23 -05:00
iterators4 solution
This commit is contained in:
parent
56a9197f55
commit
2af437fd90
3 changed files with 80 additions and 10 deletions
|
@ -1,9 +1,9 @@
|
||||||
fn factorial(num: u64) -> u64 {
|
fn factorial(num: u8) -> u64 {
|
||||||
// Complete this function to return the factorial of num
|
// TODO: Complete this function to return the factorial of `num`.
|
||||||
// Do not use:
|
// Do not use:
|
||||||
// - early returns (using the `return` keyword explicitly)
|
// - early returns (using the `return` keyword explicitly)
|
||||||
// Try not to use:
|
// Try not to use:
|
||||||
// - imperative style loops (for, while)
|
// - imperative style loops (for/while)
|
||||||
// - additional variables
|
// - additional variables
|
||||||
// For an extra challenge, don't use:
|
// For an extra challenge, don't use:
|
||||||
// - recursion
|
// - recursion
|
||||||
|
@ -19,20 +19,20 @@ mod tests {
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn factorial_of_0() {
|
fn factorial_of_0() {
|
||||||
assert_eq!(1, factorial(0));
|
assert_eq!(factorial(0), 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn factorial_of_1() {
|
fn factorial_of_1() {
|
||||||
assert_eq!(1, factorial(1));
|
assert_eq!(factorial(1), 1);
|
||||||
}
|
}
|
||||||
#[test]
|
#[test]
|
||||||
fn factorial_of_2() {
|
fn factorial_of_2() {
|
||||||
assert_eq!(2, factorial(2));
|
assert_eq!(factorial(2), 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn factorial_of_4() {
|
fn factorial_of_4() {
|
||||||
assert_eq!(24, factorial(4));
|
assert_eq!(factorial(4), 24);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -942,10 +942,10 @@ dir = "18_iterators"
|
||||||
hint = """
|
hint = """
|
||||||
In an imperative language, you might write a `for` loop that updates a mutable
|
In an imperative language, you might write a `for` loop that updates a mutable
|
||||||
variable. Or, you might write code utilizing recursion and a match clause. In
|
variable. Or, you might write code utilizing recursion and a match clause. In
|
||||||
Rust you can take another functional approach, computing the factorial
|
Rust, you can take another functional approach, computing the factorial
|
||||||
elegantly with ranges and iterators.
|
elegantly with ranges and iterators.
|
||||||
|
|
||||||
Hint 2: Check out the `fold` and `rfold` methods!"""
|
Check out the `fold` and `rfold` methods!"""
|
||||||
|
|
||||||
[[exercises]]
|
[[exercises]]
|
||||||
name = "iterators5"
|
name = "iterators5"
|
||||||
|
|
|
@ -1 +1,71 @@
|
||||||
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
|
// 3 possible solutions are presented.
|
||||||
|
|
||||||
|
// With `for` loop and a mutable variable.
|
||||||
|
fn factorial_for(num: u64) -> u64 {
|
||||||
|
let mut result = 1;
|
||||||
|
|
||||||
|
for x in 2..=num {
|
||||||
|
result *= x;
|
||||||
|
}
|
||||||
|
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
// Equivalent to `factorial_for` but shorter and without a `for` loop and
|
||||||
|
// mutable variables.
|
||||||
|
fn factorial_fold(num: u64) -> u64 {
|
||||||
|
// Case num==0: The iterator 2..=0 is empty
|
||||||
|
// -> The initial value of `fold` is returned which is 1.
|
||||||
|
// Case num==1: The iterator 2..=1 is also empty
|
||||||
|
// -> The initial value 1 is returned.
|
||||||
|
// Case num==2: The iterator 2..=2 contains one element
|
||||||
|
// -> The initial value 1 is multiplied by 2 and the result
|
||||||
|
// is returned.
|
||||||
|
// Case num==3: The iterator 2..=3 contains 2 elements
|
||||||
|
// -> 1 * 2 is calculated, then the result 2 is multiplied by
|
||||||
|
// the second element 3 so the result 6 is returned.
|
||||||
|
// And so on…
|
||||||
|
(2..=num).fold(1, |acc, x| acc * x)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Equivalent to `factorial_fold` but with a built-in method that is suggested
|
||||||
|
// by Clippy.
|
||||||
|
fn factorial_product(num: u64) -> u64 {
|
||||||
|
(2..=num).product()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
// You can optionally experiment here.
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn factorial_of_0() {
|
||||||
|
assert_eq!(factorial_for(0), 1);
|
||||||
|
assert_eq!(factorial_fold(0), 1);
|
||||||
|
assert_eq!(factorial_product(0), 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn factorial_of_1() {
|
||||||
|
assert_eq!(factorial_for(1), 1);
|
||||||
|
assert_eq!(factorial_fold(1), 1);
|
||||||
|
assert_eq!(factorial_product(1), 1);
|
||||||
|
}
|
||||||
|
#[test]
|
||||||
|
fn factorial_of_2() {
|
||||||
|
assert_eq!(factorial_for(2), 2);
|
||||||
|
assert_eq!(factorial_fold(2), 2);
|
||||||
|
assert_eq!(factorial_product(2), 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn factorial_of_4() {
|
||||||
|
assert_eq!(factorial_for(4), 24);
|
||||||
|
assert_eq!(factorial_fold(4), 24);
|
||||||
|
assert_eq!(factorial_product(4), 24);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in a new issue