try_from_into solution

This commit is contained in:
mo8it 2024-07-02 01:26:09 +02:00
parent e3c8c457ba
commit 5217cdc5e2
3 changed files with 246 additions and 77 deletions

View file

@ -1,9 +1,10 @@
// TryFrom is a simple and safe type conversion that may fail in a controlled // `TryFrom` is a simple and safe type conversion that may fail in a controlled
// way under some circumstances. Basically, this is the same as From. The main // way under some circumstances. Basically, this is the same as `From`. The main
// difference is that this should return a Result type instead of the target // difference is that this should return a `Result` type instead of the target
// type itself. You can read more about it at // type itself. You can read more about it in the documentation:
// https://doc.rust-lang.org/std/convert/trait.TryFrom.html // https://doc.rust-lang.org/std/convert/trait.TryFrom.html
#![allow(clippy::useless_vec)]
use std::convert::{TryFrom, TryInto}; use std::convert::{TryFrom, TryInto};
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
@ -13,7 +14,7 @@ struct Color {
blue: u8, blue: u8,
} }
// We will use this error type for these `TryFrom` conversions. // We will use this error type for the `TryFrom` conversions.
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
enum IntoColorError { enum IntoColorError {
// Incorrect length of slice // Incorrect length of slice
@ -22,78 +23,67 @@ enum IntoColorError {
IntConversion, IntConversion,
} }
// Your task is to complete this implementation and return an Ok result of inner // TODO: Tuple implementation.
// type Color. You need to create an implementation for a tuple of three // Correct RGB color values must be integers in the 0..=255 range.
// integers, an array of three integers, and a slice of integers.
//
// Note that the implementation for tuple and array will be checked at compile
// time, but the slice implementation needs to check the slice length! Also note
// that correct RGB color values must be integers in the 0..=255 range.
// Tuple implementation
impl TryFrom<(i16, i16, i16)> for Color { impl TryFrom<(i16, i16, i16)> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
} fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {}
} }
// Array implementation // TODO: Array implementation.
impl TryFrom<[i16; 3]> for Color { impl TryFrom<[i16; 3]> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
} fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {}
} }
// Slice implementation // TODO: Slice implementation.
// This implementation needs to check the slice length.
impl TryFrom<&[i16]> for Color { impl TryFrom<&[i16]> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
} fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {}
} }
fn main() { fn main() {
// Use the `try_from` function // Using the `try_from` function.
let c1 = Color::try_from((183, 65, 14)); let c1 = Color::try_from((183, 65, 14));
println!("{:?}", c1); println!("{c1:?}");
// Since TryFrom is implemented for Color, we should be able to use TryInto // Since `TryFrom` is implemented for `Color`, we can use `TryInto`.
let c2: Result<Color, _> = [183, 65, 14].try_into(); let c2: Result<Color, _> = [183, 65, 14].try_into();
println!("{:?}", c2); println!("{c2:?}");
let v = vec![183, 65, 14]; let v = vec![183, 65, 14];
// With slice we should use `try_from` function // With slice we should use the `try_from` function
let c3 = Color::try_from(&v[..]); let c3 = Color::try_from(&v[..]);
println!("{:?}", c3); println!("{c3:?}");
// or take slice within round brackets and use TryInto // or put the slice within round brackets and use `try_into`.
let c4: Result<Color, _> = (&v[..]).try_into(); let c4: Result<Color, _> = (&v[..]).try_into();
println!("{:?}", c4); println!("{c4:?}");
} }
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use IntoColorError::*;
#[test] #[test]
fn test_tuple_out_of_range_positive() { fn test_tuple_out_of_range_positive() {
assert_eq!( assert_eq!(Color::try_from((256, 1000, 10000)), Err(IntConversion));
Color::try_from((256, 1000, 10000)),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_tuple_out_of_range_negative() { fn test_tuple_out_of_range_negative() {
assert_eq!( assert_eq!(Color::try_from((-1, -10, -256)), Err(IntConversion));
Color::try_from((-1, -10, -256)),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_tuple_sum() { fn test_tuple_sum() {
assert_eq!( assert_eq!(Color::try_from((-1, 255, 255)), Err(IntConversion));
Color::try_from((-1, 255, 255)),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_tuple_correct() { fn test_tuple_correct() {
let c: Result<Color, _> = (183, 65, 14).try_into(); let c: Result<Color, _> = (183, 65, 14).try_into();
@ -103,25 +93,29 @@ mod tests {
Color { Color {
red: 183, red: 183,
green: 65, green: 65,
blue: 14 blue: 14,
} }
); );
} }
#[test] #[test]
fn test_array_out_of_range_positive() { fn test_array_out_of_range_positive() {
let c: Result<Color, _> = [1000, 10000, 256].try_into(); let c: Result<Color, _> = [1000, 10000, 256].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion)); assert_eq!(c, Err(IntConversion));
} }
#[test] #[test]
fn test_array_out_of_range_negative() { fn test_array_out_of_range_negative() {
let c: Result<Color, _> = [-10, -256, -1].try_into(); let c: Result<Color, _> = [-10, -256, -1].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion)); assert_eq!(c, Err(IntConversion));
} }
#[test] #[test]
fn test_array_sum() { fn test_array_sum() {
let c: Result<Color, _> = [-1, 255, 255].try_into(); let c: Result<Color, _> = [-1, 255, 255].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion)); assert_eq!(c, Err(IntConversion));
} }
#[test] #[test]
fn test_array_correct() { fn test_array_correct() {
let c: Result<Color, _> = [183, 65, 14].try_into(); let c: Result<Color, _> = [183, 65, 14].try_into();
@ -135,30 +129,25 @@ mod tests {
} }
); );
} }
#[test] #[test]
fn test_slice_out_of_range_positive() { fn test_slice_out_of_range_positive() {
let arr = [10000, 256, 1000]; let arr = [10000, 256, 1000];
assert_eq!( assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_slice_out_of_range_negative() { fn test_slice_out_of_range_negative() {
let arr = [-256, -1, -10]; let arr = [-256, -1, -10];
assert_eq!( assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_slice_sum() { fn test_slice_sum() {
let arr = [-1, 255, 255]; let arr = [-1, 255, 255];
assert_eq!( assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
} }
#[test] #[test]
fn test_slice_correct() { fn test_slice_correct() {
let v = vec![183, 65, 14]; let v = vec![183, 65, 14];
@ -169,18 +158,20 @@ mod tests {
Color { Color {
red: 183, red: 183,
green: 65, green: 65,
blue: 14 blue: 14,
} }
); );
} }
#[test] #[test]
fn test_slice_excess_length() { fn test_slice_excess_length() {
let v = vec![0, 0, 0, 0]; let v = vec![0, 0, 0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen)); assert_eq!(Color::try_from(&v[..]), Err(BadLen));
} }
#[test] #[test]
fn test_slice_insufficient_length() { fn test_slice_insufficient_length() {
let v = vec![0, 0]; let v = vec![0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen)); assert_eq!(Color::try_from(&v[..]), Err(BadLen));
} }
} }

View file

@ -1197,21 +1197,8 @@ https://doc.rust-lang.org/stable/rust-by-example/error/multiple_error_types/reen
name = "try_from_into" name = "try_from_into"
dir = "23_conversions" dir = "23_conversions"
hint = """ hint = """
Follow the steps provided right before the `TryFrom` implementation. Is there an implementation of `TryFrom` in the standard library that can both do
You can also use the example at the required integer conversion and check the range of the input?
https://doc.rust-lang.org/std/convert/trait.TryFrom.html
Is there an implementation of `TryFrom` in the standard library that
can both do the required integer conversion and check the range of the input?
Another hint: Look at the test cases to see which error variants to return.
Yet another hint: You can use the `map_err` or `or` methods of `Result` to
convert errors.
Yet another hint: If you would like to propagate errors by using the `?`
operator in your solution, you might want to look at
https://doc.rust-lang.org/stable/rust-by-example/error/multiple_error_types/reenter_question_mark.html
Challenge: Can you make the `TryFrom` implementations generic over many integer types?""" Challenge: Can you make the `TryFrom` implementations generic over many integer types?"""

View file

@ -1 +1,192 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰 // `TryFrom` is a simple and safe type conversion that may fail in a controlled
// way under some circumstances. Basically, this is the same as `From`. The main
// difference is that this should return a `Result` type instead of the target
// type itself. You can read more about it in the documentation:
// https://doc.rust-lang.org/std/convert/trait.TryFrom.html
use std::convert::{TryFrom, TryInto};
#[derive(Debug, PartialEq)]
struct Color {
red: u8,
green: u8,
blue: u8,
}
// We will use this error type for the `TryFrom` conversions.
#[derive(Debug, PartialEq)]
enum IntoColorError {
// Incorrect length of slice
BadLen,
// Integer conversion error
IntConversion,
}
impl TryFrom<(i16, i16, i16)> for Color {
type Error = IntoColorError;
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
let (Ok(red), Ok(green), Ok(blue)) = (
u8::try_from(tuple.0),
u8::try_from(tuple.1),
u8::try_from(tuple.2),
) else {
return Err(IntoColorError::IntConversion);
};
Ok(Self { red, green, blue })
}
}
impl TryFrom<[i16; 3]> for Color {
type Error = IntoColorError;
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
// Reuse the implementation for a tuple.
Self::try_from((arr[0], arr[1], arr[2]))
}
}
impl TryFrom<&[i16]> for Color {
type Error = IntoColorError;
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
// Check the length.
if slice.len() != 3 {
return Err(IntoColorError::BadLen);
}
// Reuse the implementation for a tuple.
Self::try_from((slice[0], slice[1], slice[2]))
}
}
fn main() {
// Using the `try_from` function.
let c1 = Color::try_from((183, 65, 14));
println!("{c1:?}");
// Since `TryFrom` is implemented for `Color`, we can use `TryInto`.
let c2: Result<Color, _> = [183, 65, 14].try_into();
println!("{c2:?}");
let v = vec![183, 65, 14];
// With slice we should use the `try_from` function
let c3 = Color::try_from(&v[..]);
println!("{c3:?}");
// or put the slice within round brackets and use `try_into`.
let c4: Result<Color, _> = (&v[..]).try_into();
println!("{c4:?}");
}
#[cfg(test)]
mod tests {
use super::*;
use IntoColorError::*;
#[test]
fn test_tuple_out_of_range_positive() {
assert_eq!(Color::try_from((256, 1000, 10000)), Err(IntConversion));
}
#[test]
fn test_tuple_out_of_range_negative() {
assert_eq!(Color::try_from((-1, -10, -256)), Err(IntConversion));
}
#[test]
fn test_tuple_sum() {
assert_eq!(Color::try_from((-1, 255, 255)), Err(IntConversion));
}
#[test]
fn test_tuple_correct() {
let c: Result<Color, _> = (183, 65, 14).try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14,
}
);
}
#[test]
fn test_array_out_of_range_positive() {
let c: Result<Color, _> = [1000, 10000, 256].try_into();
assert_eq!(c, Err(IntConversion));
}
#[test]
fn test_array_out_of_range_negative() {
let c: Result<Color, _> = [-10, -256, -1].try_into();
assert_eq!(c, Err(IntConversion));
}
#[test]
fn test_array_sum() {
let c: Result<Color, _> = [-1, 255, 255].try_into();
assert_eq!(c, Err(IntConversion));
}
#[test]
fn test_array_correct() {
let c: Result<Color, _> = [183, 65, 14].try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_slice_out_of_range_positive() {
let arr = [10000, 256, 1000];
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
}
#[test]
fn test_slice_out_of_range_negative() {
let arr = [-256, -1, -10];
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
}
#[test]
fn test_slice_sum() {
let arr = [-1, 255, 255];
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
}
#[test]
fn test_slice_correct() {
let v = vec![183, 65, 14];
let c: Result<Color, _> = Color::try_from(&v[..]);
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14,
}
);
}
#[test]
fn test_slice_excess_length() {
let v = vec![0, 0, 0, 0];
assert_eq!(Color::try_from(&v[..]), Err(BadLen));
}
#[test]
fn test_slice_insufficient_length() {
let v = vec![0, 0];
assert_eq!(Color::try_from(&v[..]), Err(BadLen));
}
}